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THERMAL GRAVITATIONAL-CAPILLARY
CONVECTION IN A CAVITY WITH
A LONGITUDINAL TEMPERATURE GRADIENT

V. S. Berdnikov, V. A. Gaponov, and UDC 536.24;532.529.2;621.746
L. S. Kovrizhnykh

Convective heat exchange in a flow of liquid in a rectangular cavity with the length-to-height ratio of
a liquid layer L/H = 10 is investigated. The conditions of thermal insulation or linear distribution of
temperature were kept on the lower horizontal surface. Three types of boundary conditions for veloc-
ity were set on the upper boundary: rigid, free without friction, and free with imposition of a thermo-
capillary effect. The vertical walls of the cavity are isothermal and heated to different temperatures.
The investigated regimes were of thermogravitational, thermocapillary, and thermal gravitational-cap-
illary convection. A comparative analysis of the evolution of flow structure with increase in the
Rayleigh (Ra) and Marangoni (Ma) numbers is carried out.

We investigated, numerically and experimentally, convective heat exchange in viscous incompressible
liquid flow in a long rectangular cavity A = L/H = 10 with isothermal vertical walls heated up to different
temperatures. This thermohydrodynamic system can be considered as a simplified model of one of the meth-
ods of obtaining single crystals from melts, i.e., the method of horizonta directed crystallization [1, 2]. To
create a controlled technology, it is important to know: (1) the laws governing the evolution of the spatia
form of flow with increase in the longitudinal temperature gradient under different conditions on horizonta
walls; (2) the degree of the effect of local particular features of the spatial form of flow on changes in the
shape of isotherms and local thermal fluxes on a cold wall. These parameters characterize the shape of the
crystallization front and thermal stresses in a crystal, which determines the perfection of its structure. The
present work is a natura continuation of investigations into hydrodynamics and heat exchange [1-3] in plane
layers and cavities with a longitudinal temperature gradient. The results presented below represent the next
stage in goal-directed investigations [3, 4] of the relative contribution of gravitational and capillary forces in
the formation of flow structure.

In the numerical simulation, three types of boundary conditions were prescribed on the upper bound-
ary for the velocity: rigid, free without friction, and free with imposition of a thermocapillary effect. For the
temperature, two conditions were assigned on the rigid upper wall: thermal insulation [3] and a linear distri-
bution of temperature; the condition of thermal insulation is aways fulfilled on the free (rectilinear and non-
deformed) boundary. The lower rigid horizontal surface was adiabatic or a linear distribution of temperature
was prescribed [3]. For a liquid with Prandtl number Pr = 16, the regime of thermogravitational convection
was investigated with increase in Ra from 10 to 10° and that of thermocapillary convection with increase in
the Marangoni number Ma from 10 to 10* in the entire range of Ra and Ma numbers, the regime of thermal
gravitational-capillary convection was investigated. In the latter regime, the developed thermocapillary con-
vection is taken as the initial state. Thereafter, the evolution of the flow structure with increase in the contri-
bution of buoyancy forces is investigated for Ma = idem. Comparison of the local features of flow,
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temperature fields, and local and integral heat fluxes, attributable to heat conduction and convection, on the
walls of the cavity and in different sections in the volume of the liquid, at different combinations of the
relative contribution of buoyancy forces and thermocapillary effect, makes it possible to investigate the
mechanisms of their nonlinear interaction and influence on the processes of heat exchange.

Computations were carried out by the method of compact differences [5, 6] on nonuniform grids with
the fifth order of accuracy. The principle of separate solution of equations, time-dependent technique, and the
method of fractional steps were used. Rectangular nonuniform grids, extending to the center and contracting
to the boundaries of the region, of size 400 x 40 mesh with a minimum step of 0.008 over each of the space
coordinates were used. As was shown in [7], for the case of a square cavity the increase in the order of the
schemes used [6] leads not only to quantitative, but also to qualitative differences from the earlier obtained
results on computational local characteristics [8].

The system of eguations in the Boussinesq approximation is
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The boundary conditions are

for x=0: Y=0y/0x=0, T=0.5;

for x=A: Y=0Q/9x=0, T=-0.5

fory=0: 1) y=0y/dy=0, 0T/0y=0; 2) Y =0y/0y=0, T=05-x/A

fory=1: 1) Y =ay/dy=0, T=05-x/A; 2) Y =dy/dy =0, dT/dy =0; 3 Y = d°Y/d%y =0, dT/dy = O;
4) P =0, 04/0% =—MadT/dx, dT/dy=0.

The quantities are made dimensionless (the dimensional quantities are primed) as

x=X/H, y=y/H, A=L/H; luvi=li,VviH/a; T=(T - Ty/AT,
To=(T,+T,)/2, AT=T,-T,>0.

Analysis of the evolution of the isolines of the stream function showed that the flow has a smple
single-contour circulation in al the investigated ranges of the Ra and Ma numbers [3] for al of the combi-
nations of boundary conditions. The typical pattern of evolution of the temperature field for all the regimes
is: up to the threshold values of Ra and Ma that depend on the type of conditions on horizontal boundaries,
the regime of heat conduction is preserved to which a plane-paralel flow in the region 1 <x <9 corresponds.
For example, in the regime of thermocapillary convection up to Ma = 200, heat conduction remains the main
mechanism of heat transfer. Here, up to Ma = 10 the isotherms are strictly vertical and the temperature pro-
files T(y) coincide with them (Fig. 1a); temperature distributions along the longitudinal coordinate in different
sections y (Fig. 1b) merge into a single straight line: T(X) = T; — X/A. At Ma = 100, the isotherms are only
dightly deformed, i.e, they are "torn away" by the upper branch of the flow.

Figure 1 shows the distributions of temperature and velocity in different sections in the vertical direc-
tion (a, ¢) and in the horizontal one (b, d) at Ma = 1000 (the regime of thermocapillary convection, a linear
distribution of temperature on the bottom). The velocity components are additionally normalized to the value
[Ra + (Ma)z] Y2 In this regime, the deformation of isotherms is substantial. Owing to the entrainment of the
hot liquid to the free surface and of the cold one to the bottom, there is aready a noticeable dtratification of
liquid by temperature. The most significant detail is the appearance of a small section of a boundary layer on
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Fig. 1. Characteristics of the profiles of temperature and velocity fields
in the regime of thermocapillary convection (Ma = 1000): @ T(X;, y); €
u(x;, y) in different sections x = x;; b) T(x, y;); d) V(X y;) in different
sections j = .

the lower boundary of the cavity where the curve T(x; 1/4) intersects, and then goes below, the straight line
T(x; 0) showing the distribution of temperature on the lower wall, i.e., a section appears in the lower branch
of the flow where there is an inflow of a relatively cold liquid onto the hotter and hotter wall. As Ma in-
creases, the size of this section and the absolute value of the temperature gradient along the normal to the
bottom increase, which resembles the appearance of the section of an unstably stratified boundary layer in the
regime of thermogravitational convection [3]. These effects are observed when Ma = 200.

The rearrangement of the temperature field is interconnected with the enhancement of convective mo-
tion and change in the velocity field with increase in Ma. For Ma <500 in the range 1 <x<9 the flow is
virtually plane-parallel and the profiles of the longitudinal velocity component are independent of x. Qualita
tively they coincide with the analytical solution for an infinite layer with a longitudina temperature gradient
[4] and experimentally measured profiles u(y) in the central portion of the long layer [1, 2]. As Ma increases,
the velocity profiles and the value of u, become dependent on the longitudinal coordinate (Figs. 1c, 2b).

The turning regions at the end faces of the cavity for Ma < 500 have an extension equal approximately to the
height of the layer (Fig. 1d). Figure 2 shows the evolution of longitudinal distributions of temperature (a) and
of normalized velacity (b) on the free surface with increase in Ma. It is seen in which way the heat-conduc-
tion regime (Ma < 10) passes to a congtrained regime (Ma = 2000), where a sharp burst of the longitudina
velocity component is observed near the cold wall. The asymmetry of the spatial form of the flow and of the
temperature field, which is increased with Ma, is accompanied by violation of the symmetry in the distribu-
tion of a local heat flux on the end faces and on the lower horizontal surface similarly to the regime of
thermal gravitational convection [3]. Figure 2 shows the distributions of local heat fluxes on hot (c) and cold
(d) walls for different values of Ma. On the hot wall the heat transfer is determined by the incoming flow in
the bottom region and on the cold wall by the sharp increase in heat transfer on the portion near the free
surface. The thermocapillary flow is incident on the cold wall in the form of a compact jet of a hot liquid,
and this explains the abnormally high values of the local heat flux g(y) and its maximum value q(1) in Fig.
2d. Downstream, along the cold wall in the region 0.9<y< 1, the value of q(y) for Ma = 5000 drops by an
order of magnitude. These features are also well seen from the character of the change in the family of iso-
therms near the cold wall. The dependences of the integral heat transfer (Fig. 3a) on rigid walls are obtained:
Qq is the heat flux from the hot wall, Q, is the heat flux on the cold wall, Q3 and Q, are the heat fluxes
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Fig. 2. Evolution of local characteristics with increase in Ma [1) Ma =
10; 2) 100; 3) 200; 4) 500; 5) 1000; 6) 2000; 7) 1500]: &) temperature
distributions along the free surface; b) distributions of the longitudinal
component of velocity along the free surface; dimensionless heat-transfer
coefficient; ¢) near the hot wall; d) near the cold wall.

from the heat-emitting and heat-receiving portions of the bottom. The overall heat flux from the heat-emitting
surfaces Qi3 = Q1+ Q3 = Q2+ Q4 = Q4 is equal to that received by the cold walls. The contribution of the
conductive Q, and convective Q.,, mechanisms of heat transfer was investigated run on (Fig. 3b) in the en-
tire range of Ma Qs = Q) + Qcon- The changes in the distributions over the flow section (x = 5) of the lon-
gitudinal heat-conducting (determined by the longitudinal component of the temperature gradient —-T,) and

convective uT heat fluxes with increase in Ma are shown in Fig. 3c, d; the integrals of these profiles Q, and
1

Qcon, are given in Fig. 3b. Figure 3 demonstrates the integral heat-conducting Q, = _ITX(S’ y)dy and con-
0

1

vective Qgon = Iquy heat fluxes (in the section x = 5) in comparison with the integral heat flux on the walls
0

E! 10 o 4 xJ [l
of the cavity Quy = — ng(lo, yydy + [ Ty(x 0)dx= é'TX(O, y)dy + [ Tylx, 0)dx§on the cold end face for dif-
xD | 0
O 0

ferent values of Ma. Here XU is the coordinate of the inversion point of the sign of the local heat flux q(X)

on the lower boundary: q(x9 = 0. It is seen from Fig. 3 that the relative contribution of the convective heat
flux becomes equal to the heat-conducting one a Ma = 400. Thereafter, as Ma increases, the relative contri-
bution of heat conduction sowly decreases and that of the convective heat flux increases.

The same trend is observed in all of the regimes of thermal gravitational convection, for example, in
the case of arigid adiabatic upper boundary [3] heat conduction remains the main mechanism of heat transfer
up to Ra = 4000. Here, up to Ra = 100 the isotherms are strictly vertical, the temperature distribution along
the x axis in different sections y; merges into one straight line: T(x, y;) = 0.5 — X’A. When Ra = 1000, the
isotherms become dlightly deformed. For Ra = 5000 the effect of convective motion on the shape of the
isotherms becomes substantial and the longitudinal temperature profiles separate, that is, the earlier absent
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Fig. 3. Dependences of heat fluxes on Ma: @) dependences of the integral
heat transfer on rigid walls [1) heat flux on a vertical hot wall; 2) on a
vertical cold wall; 3 and 4) heat fluxes of heat-emitting and heat-receiv-
ing portions of the bottom, respectively; 5) total heat flux from heat-
emitting surfaces equal to that received by the cold walls]; b)
contribution of conductive (1) and convective (2) mechanisms of heat
transfer, heat flux of heat-emitting portion (3) and total contribution of
conductive and convective mechanisms of heat transfer (4); c, d) distribu-
tion, over the flow section (x = 5), of the longitudina heat-conducting
heat flux and longitudinal normalized convective heat flux [1) Ma = 500;
2) 1000; 3) 2000; 4) 5000].

stable lamination of liquid by temperature (and correspondingly by density) appears in the central portion of
the cavity. In the regime of Ra = 10,000, there is already a noticeable stratification of liquid by temperature.
A small portion of the unstably stratified boundary layer on the lower boundary appears. As Ra increases, the
size of this portion and the value of the unstable temperature gradient increase. In the regime of Ra = 10°,
the isotherms in the core of the liquid layer are orientated almost horizontally. Thus, in the region of
y = 0.3 the increase in Ra is accompanied by the formation of a nearly isothermal core, whereas in the lower
region of y<0.3 an unstably stratified boundary layer is formed. The scenario of this rearrangement of the
temperature field agrees perfectly with experimental observations: the results of calculations coincide qualita-
tively and quantitatively with the results of measurements of temperature distributions in the vertical direction
in different sections in the liquid layer bounded from below by a heat-conducting wall with a linear longitu-
dinal distribution of temperature. Thereafter, in the experiment one observes (with increase in Ra) instability
in the form of longitudinally oriented vortices, i.e., the flow becomes essentially three-dimensional.

The above-noted trends correlate with the dependences of integral heat fluxes on Ra and Ma num-
bers. Data similar to those presented in Fig. 3 alow one to determine exactly, for all the regimes, the limit
of the existence of the heat-conduction regime: these are the values of Ra and Ma at which the intersection
of the Q) and Q.o curves is observed. The isotherms near the cold wall were obtained for al of the regimes
listed; they make it possible to predict the curvature of the crystalization front. Figure 4 presents some of the
results of calculations of local characteristics in the regime of thermal gravitational-capillary convection in a
system with linear distribution of T on the bottom: a and b represent the distributions of temperature and
normalized velocity on a free surface; ¢ shows the profiles of u(y) in the central section x = L/2; d gives the
distributions of the local coefficient of heat transfer on the cold wall. Here Ma is fixed, and the change in
the characteristics with increase in Ra is shown. When Ra = 5[10°, the effect of the buoyancy forces is barely
perceptible. Everything is determined by thermocapillary convection. As Ra increases in the range of two
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Fig. 4. Dependences of the local characteristics on Ra in the regime of
thermal gravitationa-capillary convection at Ma = 5000 [1) Ra = 100; 2)
5000; 3) 50,000; 4) 500,000]: a b) distributions of T and u aong the
free surface; c) profiles of u(y) in the central section x = 5; d) distribu-
tions of the local coefficient of heat transfer on the cold wall.
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Fig. 5. Dependence of the loca heat flux on the cold wall on the bound-
ary conditions (Ra = 500,000; Ma = 5000): 1) a rigid upper boundary
with a linear distribution of T; 2) rigid adiabatic; 3) free without friction;
4) free.

orders of magnitude of it, there occurs a transition to the regime of thermogravitational convection, against
the background of which the thermocapillary effect is felt only near the cold wall. In the range 9.5< x< 10,
the gradient of T is increased sharply, and on its background a local burst of the longitudina velocity com-
ponent is observed (the sharp maximum in Fig. 4b). In the zone of incidence onto the cold wall, the heat flux
has a sharp local maximum. Such a maximum is absent in the regime of thermogravitational convection. In
the regime of thermal gravitational-capillary convection, at any values of Ra the influence of the thermocapil-
lary effect shows itself in the velocity gradient near the free surface being not equa to zero.

Figure 5 demongtrates the distributions of local heat fluxes on the cold wall at different boundary
conditions for fixed values of Ra and Ma. Here, curve 1 corresponds to the case of a rigid upper boundary
with a linear distribution of T; 2 to a rigid adiabatic boundary; 3 to a free, without friction, boundary; 4 to a
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Fig. 6. Dependence of the dimensionless integral coefficient of heat
transfer on Ra and Ma.

free one with Ma = 5000. The superposition of the gravitational and capillary effects is accompanied by a
sharp burst of the heat flux in the region of contact of the free surface of the liquid with the cold wall.

The results of calculations of the integral coefficients of heat transfer in the regimes of thermal gravi-
tational-capillary convection with linear distribution of T on the bottom are systematized in Fig. 6a, b and on
an adiabatic bottom in Fig. 6¢, d. The results are presented in the form of the surface of Nu (Ra, Ma) and in
the form of the isolines log Nu on the plane {Ra, Ma}. In addition to the actual data on the values of Nu, it
is very well seen here when (at what Ma) and to which extent, at a given value of Ra, the influence of the
thermocapillary effect is felt against the background of thermogravitational convection and vice versa. Espe-
cialy pronounced are the regions of the dominating influence of buoyancy forces against the background of
thermocapillary convection or of the thermocapillary effect against the background of thermogravitational
convection depending on the starting regime. From the comparison of the data given, it is seen that on the
qualitative level the laws governing the mutual effect of the analyzed mechanisms of generation of flow de-
pend weakly on the type of condition on the bottom of the cavity, but the absolute values of Nu depend
greatly on them.

This work was carried out with financia support from the Russian Foundation for Basic Research
(project code 99-01-00544) and Integration Projects of the Siberian Branch of the Russian Academy of Sci-
ences Nos. 2000-49 and 2000-55.

NOTATION

A, ratio of the sides of the cavity; a, thermal diffusivity; H, height of the layer of liquid; L, length of
the layer of liquid; Ma, Marangoni number, Ma = ATotH%/paL; Nu, Nusselt number; Pr, Prandtl number, Pr
= V/a; ((X), local heat flux on the bottom; q(y), local heat flux on the vertical wall; Q, heat flux; Ra,
Rayleigh number, Ra = BgATH4/vaL; T, dimensionless temperature; T, = dT/0x, longitudina component of
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temperature gradient; T, = 0T/dy, transverse component of temperature gradient; {u, v}, dimensionless veloc-
ity vector; X, y, dimensionless coordinates; X;, ;, vertical and horizontal sections of the cavity, respectively;
X~ coordinate of the point of sign inversion; 3, coefficient of volumetric expansion; AT, temperature differ-
ence between vertica walls; A, thermal conductivity; p, coefficient of dynamic viscosity; v, coefficient of
kinematic viscosity; o1 = —(00/0T), temperature coefficient of surface tension; w, velocity curl; ), stream
function. Subscripts: 1, vertical hot wall; 2, vertical cold wall; 3, heat-emitting portion of the bottom; 4, heat-
receiving portion of the bottom; con, convective; A, conducting; %, overall.
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